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Abstract. An exact solution of the Einstein equations corresponding to an equilibrium 
distribution of disordered electromagnetic radiation with planar symmetry is obtained. This 
equilibrium is due solely to the gravitational and pressure effects inherent to the radiation. 
The distribution of radiation is found to be maximum and finite at the plane of symmetry, 
and to decrease monotonically in directions normal to this plane. 

The solution tends asymptotically to the static plane symmetric vacuum solution 
obtained by Levi-Civita. Time-like and null geodesics are discussed. 

1. Introduction 

In general relativity there are few exact solutions representing the vacuum fields. The 
proper interpretations of these solutions depend a great deal on the structure of the 
sources of the field. There are different structures that can be associated with the source 
for a particular vacuum field solution. 

It is quite worthwhile to explore the possibility of the highly relativistic fluid as the 
source of plane symmetric vacuum solution first given by Levi-Civita (1918). As is well 
known gravitation can never produce hydrostatic equilibrium in a finite highly relativis- 
tic fluid with p = p / 3 ,  the only possible distribution that can exist is unbounded plane 
symmetric, asymptotically tending to the plane symmetric vacuum solution. 

Tolman (1934,§ 109)seems to have been the first to provide sufficient mathematical 
apparatus for studying that possibility; he explained the circumstances under which 
radiation may be treated as a special case of a perfect fluid. Klein (1948) first applied 
Tolman’s results to a cosmological situation; he studied a spherically symmetric 
distribution of disordered electromagnetic radiation in equilibrium. He was able to find 
only an approximate solution, which he presented as a set of series expansions in terms 
of his dimensionless radial variable q o r 2 .  

In the present paper we obtained the exact solution of an unbounded plane 
symmetric distribution of disordered radiation in equilibrium. Similarly to Klein’s 
sphere, our distribution shows a larger condensation in the central regions and dilutes 
monotonically to a vanishing distribution outwards. In the asymptotic regions our 
solution goes to Levi-Civita’s (1 918) plane symmetric vacuum solution. Some time-like 
and null geodesics are discussed. 
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2. General equations 

We start with the static and plane symmetric line element: 

ds2 = e2p(dxo)2 - e2' dx2 - (dy2 + dz2), (1) 
where a and p are functions of x alone. The surviving components of the Ricci tensor 
are: 

a119 (2) 

(3 ) 

(4 1 

R; = 

R = -[pI1 +t(3al + pd(a1 -PI)] e-2p, 

R ;  = R = i(all - pll) e-28, 

where the subscript 1 means d/dx. 
Perfect fluids are systems with energy-momentum tensor given by: 

T t = ( p  + ~ ) U ~ U , - P S ~ ,  (5 1 
where p, p and U cI are the rest energy density, the pressure and the macroscopic velocity 
field of the fluid; this last quantity must satisfy U "up = 1. We consider a perfect fluid with 
equation of state: 

P = 3 P  (6)  
(Tolman 1934, 0 109); for such a fluid with planar symmetry and under the static 
condition ( U '  = = u 3  = 0) we have 

Tt=p(x)diag(3, -1, -1, -1). (7 1 
The Einstein equations: 

R:= -K(T;-&T), K = 8 a ~ / c ~ ,  

e-2P 

[~11+1(3al+~l)(al-p1)1 e-2p = - K P ,  

(a11-P11)e-2' = ~ K P ,  

reduce to the three equations: 

all=3Kp, 

and the contracted Bianchi identity gives the relation: 

pi +4p(Y1= 0. 

3. Solution of equations 

From (9) and (11) we easily obtain 3p = a - bx +a, where a and b are constants of 
integration. Since we seek a solution which is regular at the plane of symmetry, we put 
goo = -gxx = -gYy = 1 on the plane x = 0; from (1) one finds then that a (0) = p(0) = 0. 
So, with the constant a = 0, we have 

3p = a - bx, b = constant. (13) 

12all+ (10al-b)(2a1+ b)=O, (14) 

From (9), (10) and (13) we obtain the equation 
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whose solution is: 

10a = -5bx + 6  In (c + d  ebx), (15) 
with c and d constants of integration. We also require that our system present mirror 
symmetry with respect to the plane x = 0; we then impose, as another boundary 
condition, that the normal derivative of the metric coefficient goo be zero on the plane 
x = 0. So, with a(O)= al(0)= 0, we obtain from (15) 

c = 1/6, d = 5/6. (16) 
The pressure p can now be easily obtained from (9): the result satisfies the relation 

(12) and is 

p = ( b 2 / 3 6 ~ )  e-4". (17) 
If we call b 2 / 3 6 ~  = p o  our results become: 

ds2=f3  e-E(dx0)2-fe-E dx2-f'(dy2+dz2), 
6 2E P = P o f  e 3 

where: 

f ( 5 )  = [&(I + 5 eE)]2'5, (20) 

goo= 1 +t2 /12 ,  p = Po0 - t2/6),  (<< 1 ;  (21) 

( ( x )  = 6 ( ~ p , x ~ ) ' / ~  2 0. 

In regions close to the central plane ( x  = 0) we have the approximate values: 

these results will be used in connection with some special geodesics in the next section. 

we introduce the primed coordinates given by: 
For studying the properties of the system in regions far from the central plane x = 0 

x ' O / x 0  = (5/6)3'5, X' IX  = y /y '  = z / z ' =  (5/6)'15, (22) 

ds2=  h3  e-"(dxo)2-h e-'dx'2-h-1(dy'2+dz'2), (23) 

p = qh-fi e2', (24) 

h ( 7 )  = (e' + 1/5)2'5, 7 ( X ' )  = 5 (KqX'2)1/2 2 0, q = ~ ~ ( 6 / 5 ) ' ~ / ' .  (25) 

in terms of which the exact solution becomes: 

where: 

Then in regions far from the plane x '  = 0 we have the approximate (asymptotic) 
soliition: 

these results will be discussed later, in connection with the exact Levi-Civita plane 
symmetric static vacuum solution. 

Before closing this section we evaluate the energy content of our system, per unit 
area on the ?lane x '  = 0. We start from the expression of the energy content of a 
volume element (Tolman 1934, 0 92): 

d3E = ( - ~ ) " ~ ( 2 f i -  T )  dx' dy' dz', g = det g,,; (27) 
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for our fluid, with line element (23) and pressure (24), we have 

d3E/dy' dz' = 6qh-' e" dx'. (28) 

Integrating this differential de' of the surface energy density between two planes 
x' = kconstant we get: 

for Ix'I, 77 +CO we obtain for the surface energy density a finite value: 

E' = (4q/K)ll2. (30) 

This result will also be discussed later, in connection with the Levi-Civita solution. 

4. Time-like geodesics 

It is well known that if U" is the four-velocity of a test particle in geodetic motion and k" 
is a Killing vector field, then =constant along the geodetic motion. Since the 
symmetries of our system are given by: 

k & , = S z ,  a = 0 ,2 ,3 ,  (31) 

UO=D' ,  ~2 = -B, U 3  = -c, (32) 

7 7 (33) u o  = 0 2  e-2a U' = B ea-@, u 3  = c a - P  

(34) 

the possible time-like geodesics have necessarily: 

where D2,  B and C are constants. The contravariant components are 

(U')' = [D4 e-za - 1 - (B2 + C') ea-@]eP2@, 

where we used U "U, = 1 to obtain (34). 
In view of the difficulty in obtaining subsequent integrals of (33) and (34) with our 

line element (18) we only consider motions of test particles with velocities small in 
comparison with that of light, and in regions not far from the central plane x = 0. In 
other words, we take the velocity parameters B2,  C2 ,  D 2  - 1 and the distance variable 6 
all very small. We then obtain from (33) and (34) with the line element (18): 

dxO/ds-(l -3Kp0X2)D2= 1, dy/ds = B, dzfds=C, (35) 

( d ~ / d s ) ~  D4 - 1 - B' - C2 - 3~p0.x'. (36) 
These equations can now be integrated easily; we call x o  = ct and obtain the approxi- 
mate (non-relativistic) time-like geodesics: 

dx f dt-cA sin ut, dyldt-cB, dzfdt-cC, (37) 

A 2  =D4-  1 -B2-C2,  W = ( ~ K C ' P O ) ~ / ' .  (38) 

where: 

These geodesics represent sinusoidal motions on planes normal to the plane x = 0, and 
with nodes on the plane x = 0. 
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5. Null geodesics 

Null geodesics are formally obtained from (33), but now u'u, = 0. A first integral is 
then 

dy/dxO = B e3a-8, dz/dxa = C e3a-p, (39) 
(&/dX0)' = e2a-2P - (B2 + C') e5p-38; (40) 

the two constants B and Care  related to a given initial direction of the null geodesic. 

in (39) and (40) we obtain for the trajectory in the ( x ,  y )  plane the equation: 
Let us consider a light ray travelling in the plane z = 0. Making the constant C = 0 

(dy/dx)2 = B2f e-"(1- B2f4  e-')-', (41) 

B 2  = sin2 U, (42) 

where we used the line element (18). One finds that: 

Y being the angle of incidence of the ray on the plane x = 0, where 6 = 0 andf = 1. After 
crossing this central plane the ray travels outwards until it reaches a maximum distance 
from the plane x = 0; this distance is given by dx/dy =0, or 

e'I2f2 = sin v. (43) 
After having reached this distance the ray proceeds inwards with identical 
characteristics. For large angles of incidence on the plane x = 0 (v = r/2,  B 2  = 1) one 
finds from (43) that the maximum distance reached by the ray is given by: 

tmax = 3 ( ~ / 2  - v)' << 1 ; (44) 
for almost normal incidences (v -- 0, B = 0) we obtain: 

tmax=-(10/3)ln ~ > > l ,  

while for an incidence of 45" we get: 

Smax- 1.5. 

(45) 

(46) 

6. Discussion 

We obtained the exact unbounded solution given by general relativity to a class (p = 3p) 
of perfect fluids with planar symmetry, under static conditions; two physical examples 
of such fluids are disordered distributions of electromagnetic radiation (Tolman 1934, 
0 109), and disordered distributions of neutrinos (Klein 1948). Also distributions of 
colliding particles with randomly oriented ultrarelativistic velocities can be described, 
in the first approximation, in terms of that class of fluids (Klein 1948). 

We found that the gravitational attraction associated with the energy density of 
these fluids is strong enough to compensate for the repulsion caused by the correspond- 
ing pressure. It is then possible to have an isotropic electromagnetic radiation bound 
together in a static equilibrium configuration solely due to its own gravitation. 

We have defined (20) our 'working x variable' 6 such that 6(x) = [(-x); this ensured 
the mirror symmetry of the system across the plane x = 0, since the pressure and all 
metric coefficients have been expressed in terms of 6. The same remark holds for ~ ( x ' ) .  
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The density of our plane symmetric fluid is maximum and finite on the central plane 
x = 0, and decreases monotonically to zero in both directions normal to this plane. 

In our system the scalar curvature R vanishes everywhere, however R ER = 

1 2 ~ ’ ~ ’  as can easily be obtained from (7) and (8); this quantity is also finite in the 
central plane and decreases monotonically to zero outwards. 

In the central zone (4 << 1) the density of the fluid is nearly uniform, as can be seen 
from (21); as a consequence we obtained a sinusoidal motion (37) for slowly moving test 
particles in that zone. 

It is known from non-relativistic mechanics that an infinite slab of homogeneous 
fluid of mass density p produces internal motions of test particles which are sinusoidal 
with frequency U’ =  KC^^/?,. If we compare this result with ours, 0’ = ~c’p,  obtained in 
(38), we find that our fluid with = p = 3p produces a gravitational field which, in the 
first approximation, resembles that produced by a homogeneous fluid with active mass 
density p = 2p /cz .  This is in agreement with the general result (Tolman 1934, 0 110) 
that active gravitational mass density is (p + 3p)/cz. 

It is also known from non-relativistic gravistatics that an infinite homogeneous 
slab with surface mass density a produces an external acceleration field which is 
uniform and directed inwards, of strength 27rGa (or ~ c ~ a / 4 ) ;  to this acceleration field 
corresponds a Newtonian potential: 

4 (XI) = (KC4a/4)1X’/. (47) 

Newtonian potential C#J is often related to the metric coefficient goo of the relativistic 
description according to goo = exp(2+/c2): Indeed, the exact Levi-Civita (1918) static 
vacuum solution with planar symmetry can be written as: 

(dy” + dz”), (48) ds2 = e2d/C2(dX0’)2 - e - 6 + / ~ z  dX12 - e - 4 d / C z  

with 4 as given in (47). One finds that this line element coincides with our asymptotic 
line element (26). Our surface energy density, e’ = 2(q/~)’/’, obtained in (30) coincides 
with Levi-Civita’s surface density of energy, c’a = 2(q/~)”’, obtained by comparing 
( 2 5 )  and (26) with (47) and (48). 

Again, in the non-relativistic gravistatics of usual perfect fluids, one finds that the 
condition for local equilibrium is grad p = -p’  grad 4, wherep is the pressure, p’ > > p / c 2  
is the mass density and 4 is the Newtonian potential. If we now compare this equation 
with the result p1=-(4p/3)a1 stated in (12) we find that, in a first approximation 
(6 = c’a), our fluid behaves with a passive mass density p‘ = 4p/3c2. For usual 
incompressible fluids the contribution p/c’  of the pressure p to the passive mass density 
p’ = ( p  +p) /c ’  (Tolman 1934 0 95) is negligible ( p  << p ) ,  but in our fluid this contribu- 
tion is considerable and amounts to p = p/3. 

From (29) and (30) one finds that one half of the total energy of our fluid slab is 
contained between the pair of planes given by (e“ - l)(e“ + 1/5)-’ = 1/2, or 77 = [=  
0.8. We may then take the value 25= 1.6 as a measure of the effective thickness of our 
slab. Referring then to (20) one finds that this thickness is given in light years by 
(2x1 = 186p,’/’, with the central pressure po  in atmospheres; the thickness of the slab is 
thus seen to decrease with increasing central pressure. Some representative values of 
radiation pressures are 0.002 atm and lo7 atm, corresponding to the situation on a hot 
star surface and at the beginning of a thermonuclear reaction, respectively (Band 
1955). The values of the effective thickness (2x1 corresponding to these values for the 
central pressure PO are 4000 light years and 20 light days, respectively. 
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